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S1. Structure of Res-UNet 

The Res-UNet are inspired by U-Net [48], residual block [24, 47] and Inception module 

[51, 78]. As shown in Fig. S1(a), it consists of an encoding path (left), a decoding path 

(right) and a bridge path (middle). The encoding and decoding paths each contain four 

residual blocks, while the residual block of the encoding path is followed by max pooling 

for downsampling and the residual block of the decoding path is preceded by transposed 

convolution for upsampling. As shown in Fig. S1(b), the Inception module is inserted 

into residual block, which includes branch 0, branch 1, branch 2, branch 3 and branch 4. 

 

Fig. S1 Structure of (a) Res-UNet and (b) residual block. 

S2. Comparison of D_RME and D_RME0 

To verify the quality of datasets with different h distributions, we trained Res-UNet by 

D_RME and D_RME0 as shown in Table S1. Then, the two trained networks (RME-Net 

and RME0-Net) were tested, whose RMSEm and RMSEsd are shown in Table S2. It can 

be seen that the RMSEm of RME-Net is significantly lower than that of RME0-Net, 

which indicates that assigning more data with high h to the training dataset can improve 
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the performance of the neural network when other factors (such as the generation method 

and number of datasets) are the same. 

Table S1 Summary of D_RME and D_RME0. 

Datasets sizes 
Proportion of h in 10-

30 

Proportion of h in 

30-35 

Proportion of h in 

35-40 

Training part of D_RME 20,000 50% 20% 30% 

Testing part of D_RME 2,000 2/3 1/6 1/6 

D_RME0 for training 20,000 2/3 1/6 1/6 

Table S2 Accuracy estimation of RME-Net and RME0-Net. 

  D_RME D_GFS D_ZPS D_RDR 

RMSEm 
RME-Net 0.0910 0.0982 0.1336 0.1103 

RME0-Net 0.1766 0.1798 0.2019 0.1624 

RMSEsd 
RME-Net 0.0507 0.1037 0.2320 0.1001 

RME0-Net 0.0652 0.1591 0.2265 0.0739 

S3. RMSEm and RMSEsd of the congruence results 

To verify the effect of congruence operation, we calculated RMSEm and RMSEsd for the 

networks and their congruence results, as shown in Table S3. RMSEm for almost all the 

results decreases significantly after the congruence operation, except for ZPS-Net, 

because ZPS-Net has low raw accuracy on the non-ZPS testing datasets. 

Table S3 Accuracy estimation of RME-Net, GSF-Net and ZPS-Net. “-C” represents the 

congruence results. 

 
 

D_RME 
D_RME-

C 
D_GFS 

D_GFS 

-C 
D_ZPS 

D_RME-

C 
D_RDR 

D_RME-

C 

RMSEm 

RME-Net 0.0910 0.0002 0.0982 0.0069 0.1336 0.0454 0.1103 0.0093 

GSF-Net 0.2263 0.1439 0.0985 0.0007 0.1133 0.0174 0.1184 0.0025 

ZPS-Net 2.5148 2.6141 0.4221 0.3862 0.0821 0.0001 0.8245 0.8307 

RMSEsd 

RME-Net 0.0507 0.0092 0.1037 0.1065 0.2320 0.2455 0.1003 0.0593 

GSF-Net 0.4571 0.5280 0.0234 0.0175 0.1077 0.1278 0.1557 0.1900 

ZPS-Net 2.8249 2.9398 0.6252 0.7390 0.0220 0.0016 1.1405 1.2896 

S4. Comparison of D_RME and D_RME1 

To compare the quality of D_RME and D_RME1, we calculated RMSEm for RME-Net 

and RME1-Net, as shown in Table S4. It can be seen that RMSEm of RME1-Net is almost 

half that of RME-Net. 
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Table S4 Accuracy estimation of RME-Net and RME0-Net. 

  D_RME D_GFS D_ZPS D_RDR 

RMSEm 
RME-Net 0.0910 0.0982 0.1336 0.1103 

RME1-Net 0.0515 0.0468 0.0649 0.0667 

S5. A demonstration of dRG phase unwrapping method 

In order to enable readers to get started quickly and deeply understand the deep learning-

based phase unwrapping method, we provide a detailed demonstration of dRG here, 

including dataset generation, neural network making, training and testing. All the codes 

are available in a Github repository 

(https://github.com/kqwang/Phase_unwrapping_by_U-Net). 

S5.1 Dataset generation 

Here we use RME to generate the dataset. On the one hand, the parameters (phase size 

and h value range, etc.) are appropriately relaxed to improve the applicability. On the 

other hand, Gaussian noise is added to improve the anti-noise performance. Readers can 

further adjust the parameters according to actual needs.  

The core parts of dataset generation codes (dataset_generation.m) are mainly 

explained in Fig. S2: 

(a) Set all required parameters, which can be adjusted according to the actual needs 

of readers; 

(b) Get initial absolute phase by enlarging a small random matrix; 

(c) Set the height h so that 50% of the data is within 2/3 of h, 20% of the data is 

between 2/3 of h and 5/6 of h, and 30% of the data is between 5/6 of h and h; 

(d) Normalize the initial absolute phase to 0-h as network ground truth; 

(e) Add Gaussian noise with a standard deviation of 0-noise_max to the absolute 

phase (The default value of noise_max is 0); 

(f) Calculate the wrapped phase from the noisy absolute phase as network input. 
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Fig. S2 Core parts of the dataset-generation codes. 

All the datasets have been uploaded to the figshare 

(https://figshare.com/s/685e972475221aa3b4c4), as shown in Fig. S3. The datasets 

generated by dataset_generation.m are as following:  

 train_in: The wrapped phase as input of the training dataset is in this folder and 

named 000001.mat to 020000.mat;  

 train_gt: The absolute phase as ground truth of the training dataset is in this 

folder and named 000001.mat to 020000.mat; 

 test_in: The wrapped phase as input of the testing dataset is in this folder and 

named 000001.mat to 002000.mat;  

 test_gt: The absolute phase as ground truth of the testing dataset is in this folder 

and named 000001.mat to 002000.mat. 

In addition, we provide anther dataset for testing. It is a noise-free testing dataset of 

real objects, which includes: candle flames, pits of different arrangements, grooves of 

different shapes and tables of different shapes: 

 test_in_real: The wrapped phase as input of the real testing dataset is in this 

folder and named 000001.mat to 000421.mat;  

 test_gt_real: The absolute phase as ground truth of the real testing dataset is in 

this folder and named 000001.mat to 000421.mat; 

 

Fig. S3 Datasets for phase unwrapping. 

S5.2 Neural network making 
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According to the structure in Fig. S1, we built the neural network in the file Network.py, 

whose core part (residual block) is shown as Fig. S4. The codes of branches in the 

residual block are shown in Fig. S5. 

 

Fig. S4 Codes of the residual block. 

 

Fig. S5 Codes of branches in the residual block. (a) branch 0; (b) branch 1; (c) branch 2; 

(d) branch 3; (e) branch 4. 
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S5.3 Neural network training and testing 

Before training and testing the neural network, we need to build a python environment 

and install the following packages: torch 1.0.1, numpy 1.16.2, tqdm 4.31.1, scipy 1.2.1. 

Readers only need to run main_train.py to start training the neural network. It 

should be noted that the corresponding parameters need to be set in Lines 15-22 of 

main_train.py at first, as shown in Fig. S6. During training, information such as progress 

bar and loss function will be displayed and updated every epoch, as shown in Fig. S7.  

After training, two files (loss and others.csv and weights.pth) will be saved in the 

folder model_weights, as shown in Fig. S8. The former saves the parameters in the 

training process, such as learning rate, loss function, time-consuming, etc. The latter 

saves the weights and biases of the trained neural network. 

 

Fig. S6 Parameters for network training. 

 

Fig. S7 Training process. 

 

Fig. S8 Files obtained after network training. 

By running main_test.py, the reader can use the trained neural network to do some 

test. It should be noted that the corresponding parameters need to be set in Lines 14-18 of 

main_test.py at first, as shown in Fig. S9. So far, the testing results will be saved in the 

folder Resultes in format of .mat. 
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Fig. S9 Parameters for network testing. 

In addition, there are two files that need to be used during network training and 

testing, namely train_func.py and dataset_read.py, which are used for network training 

and dataset reading, respectively. 

Finally, readers can perform error analysis on the testing results in the folder 

Resultes by running error_evaluation.m. 

S6. A demonstration of dRG phase unwrapping method 

We train other neural networks by the datasets with h in the range of [10, 80] and test the 

trained neural networks by the datasets with h in the range of [10, 90]. As shown in Fig. 

S10, the height adaptive range of the neural network to h increases from the previous 40 

to nearly 80. 

 

Fig. S10 RMSEm of the networks for absolute phase in different height. 

S7. A demonstration of dDN with wrapped phase denoising 

For dDN, we train a network to do denoise directly in wrapped phase. As shown in Fig. 

S11, the wrapped phase of the neural network has error with the GT at the edges of the 

wrap, causing severe error propagation for the line-scanning method. 
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Fig. S11 Results of the dDN with wrapped phase denoising. 

S8. Congruence results in different noise level 

To verify the effect of congruence on dRG and dDN, we compared the RMSE of its 

results under different noise levels, and the results are shown in Fig. S12. After 

congruence, RMSEm of dRG and dDN decreases to the same level as dWC after 

congruence. 

 

Fig. S12 RMSEm of dRG-C, dWC, dDN-C and the WFT-QG method in different noise 

levels. “-C” represents the congruence results. 


